1.	(i)	120–130 (1)	1	
	(ii)	boiling point increases with increase in <i>M</i> r/molecular formula/number of carbon atoms/chain length (1) more intermolecular forces/electrons/surface area/ surface interactions/van der Waal forces (1)	2	[3]
				[0]
2.	С ₁₃ Н	28		[1]
3.	C ₉ H ₂	$_{0} \rightarrow C_{7}H_{16} + C_{2}H_{4}$ (1)		[1]
4.	(i)	Any branched isomer of heptane with correct name, e.g.		
		2-methylhexane (1)	2	
	(ii)	\rightarrow $+$ H_2	2	
				[4]
5.	(i)	species with an unpaired electron (1)	1	
	(ii)	uv (light)/high temperature/min of 400° C/sunlight (1)	1	
	(iii) (iv)	$C_{4}H_{10} + Cl^{\bullet}(1) \rightarrow C_{4}H_{0}^{\bullet} + HCl(1)$	1	
	~ /	$C_4H_9^{\bullet} + Cl_2 (1) \rightarrow C_4H_9Cl + Cl^{\bullet} (1)$	2	[5]
6.	(i)	$8.72/136.9 = 0.0637 \mod (1)$	1	
	(ii)	$M_{\rm r}$ butan-1-ol = 74(.0) (1)		
		moles = $4.28/74.0 = 0.0578 \mod (1)$	2	
	(iii)	$0.0578/0.0637 \times 100 = 90.7\%$ (1)	1	[4]

7. Availability of starting materials:

availability

sugar is renewable because it can be grown (1) ethane is finite because it is obtained by processing of crude oil (1)

energy:

fermentation: energy is required for distillation/ hydration: energy is required to generate steam (1)

atom economy and waste products:

atom economy for fermentation < atom economy hydration (1) In fermentation, CO_2 is produced in addition to ethanol/ethanol is not the only product (1) In hydration, ethanol is the only product/hydration is an addition reaction (1) Atom economy of fermentation could be increased by finding a use CO_2 (1)

Atom economy linked to a chemical equation to show that hydration has 100% atom economy/fermentation has 51% atom economy (1) 7max

[7]

8.	(i)	$M_{\rm r} {\rm C_7 H_{16}} = 100 (1)$		
		amount = $2000/100 = 20 \mod (1)$ 2		
	(ii)	energy saved = $20 \times 4817 = 96340 \text{ kJ}$ (1) 1		
	(iii)	moles $CO_2 = 7 \times 20 = 140 \text{ mol (1)}$		
		decrease in $CO_2 = 140 \times 24 = 3360 \text{ dm}^3$ 2	2	
		(1)	Ι	5]

9. structural isomerism:

structural isomers: same molecular formula, different structural formula (1) structural isomers of but-1-ene: but-2-ene (1) and methylpropene (1)

geometric isomerism C=C prevents rotation of the double bond (1) each C in the C=C double bond bonded to 2 different atoms or groups (1)

a clear statement that links non-rotation of the double bond to the idea of groups being trapped on one side of the double bond (1)

cis but-2-ene clearly identified (1) *trans* but-2-ene clearly identified (1)

10. 1st bullet

product: $CH_3CH_2CHBrCH_2Br$ (1) equation: $CH_3CH_2CH=CH_2 + Br_2 \rightarrow CH_3CH_2CHBrCH_2Br$ (1)

products: $CH_3CH_2CHBrCH_3$ and $CH_3CH_2CH_2CH_2Br$ (1) (or statement that 2-bromo- is formed) equation: $CH_3CH=CHCH_3 + HBr \rightarrow CH_3CH_2CHBrCH_3$ (1) (*i.e.* for one product)

products: $CH_3CH_2CHOHCH_3$ and CH3CH2CH2CH2OH (1) (or statement that 2-ol is formed) equation: $CH_3CH=CHCH_3 + H_2O \rightarrow CH_3CH_2CHOHCH_3$ (1) (*i.e.* for one product)

2nd bullet

mark for skeleton with two repeat units (1)
 mark for correct groups on side chains (1)

3rd bullet

two (1) (1) from energy from incineration development of biodegradable polymers cracking of waste polymers

11. separation by (differences in) boiling point

$$C_7H_{16} \rightarrow C_4H_{10} + C_3H_6$$

(i) Any of

(or by structural formula)

1

6

2

2

1

1

1

CH₃

[10]

(ii)	3-methylhexane, 3,3 dimethylpentane or (3)-ethylpentane in any unambiguous form.	2	
(iii)	2,2,3-trimethylbutane	1	
(iv)	if branched, difficult to pack/less surface interaction/less points of contact less van der Waals' forces/ less intermolecular bonds/less energy needed to boil	1 1	[10]

12.	(a)	(i)	phosphoric acid/H ⁺ /sulphuric acid	1
		(ii)	lone/electron pair of electrons acceptor	1

(b) (i)

Step 1	curly arrow from π -bond to H^+	1
Step 2	curly arrow from lone pair on the $O^{\delta-}$ to C+	1
Step 3	curly arrow from O—H bond to O+	1

(ii)	catalyst no marks because it is not consumed/used up in the		
	reaction/owtte	1	

[6]

13.	(a)	3-chloro(-2-)methylprop-1-ene/1-chloro(-2-)methylprop-2-ene	1

(b)

Backbone of 4 carbons and a reasonable attempt gets 1 mark.

2

15.	Bonding:	π -bond formed by overlap of (adjacent) p-orbitals/ π -bond labelled on diagram	1	
		diagram to show formation of the π -bond	1	
		$H_{3C} \rightarrow H_{H}$ minimum allowed for diagram mark		
		or		
		$\rightarrow \rightarrow $		
	Shape/bon	d angles:		
		tetrahedral around the CH ₃	1	
		bond angle = 109°28/ (109-110°)	1	
		trigonal planar around each C in the C=C	1	
		bond angle = 120° (118-122°)	1	
	Cis-trans			
		<i>cis</i> & <i>trans</i> correctly labelled eg but-2-ene require a double bond because it restricts rotation each C in the C=C double bond must be bonded to two different atoms	1 1	
	OWC	or groups	1	
	Qwc	orbital, tetrahedral, trigonal, planar, rotation, spatial, stereoisomers, geometric	1	[10]
16.	(i) (free	radical) substitution	1	

(ii)	1-bromohexane, 2-bromohexane and 3-bromohexane	3

[4]

17. (a)

(b)	(i)	Hs are diagonal to each other in the <i>trans/</i> difference clearly shown in a diagram	1
	(ii)	(the product is saturated hence) there is no restricted rotation/single bonds allow rotation/because C=C prevents rotation	1

[6]

1

1

1

• Recognises that eith sufficient) is requir	Recognises that either a catalyst or high temperature (heat is not sufficient) is required				
cracking	suitable balanced equation	1			
reforming compound	equation or statement indicating formation of a ring/cy	clic			
suitable balanced e	suitable balanced equation with H_2				
(balanced equation	showing formation of a ring scores both marks)	1			
isomerisation	suitable balanced equation				
The processed pro	The processed products are:				
• used in	n fuels/used in petrol				
• better	/more efficient fuels/increase octane number/rating				
• alkene	s (from cracking) produce polymers/alcohols				
• H_2 use	ed for Haber process/fuels/hydrogenation of oils	3			
QWC SPAC	G – look for two complete sentence that present a	1			
coherent argument	- •				
-		[9]			

19.	(i)	$C_{6}H_{10}$	1	
	(ii)	C_3H_5 / ecf to (i)	1	
	(iii)	M_r of cyclohexene = 82	1	
		% C = $(72/82) \times 100 = 88\%$	1	
		87.8% gets 1 mark		
		ecf to (i) and (ii) for both marks		
		Alternative calculation based on empirical formula:		
		Mass of empirical unit = 41, % $C = (36/41) \times 100 = 88\%$		
				[4]

 $C_6H_{11}OH / C_6H_{12}O \rightarrow C_6H_{10} + H_2O$

(ii)

from the diol allow

from the Cl-alcohol allow

1

2

[6]

22.	(a)	(i)	compound/molecule containing hydrogen and carbon only	
		(ii)	$C_{10}H_{22}$	1
		(iii)	C_5H_{11} {ecf from (ii)}	1
	(b)	(i)	(a particle that) contains/has a single/unpaired electron	1
		(ii)	UV (light) /sunlight/high temp	1
		(iii)	homolytic (fission)/ homolysis	1
		(iv)	$C_{12}H_{26} + Cl \bullet \rightarrow \bullet C_{12}H_{25} + HCl$	1
			(the dot for the free radical does not have to be on the C)	
			$\bullet C_{12}H_{25} + Cl_2 \rightarrow C_{12}H_{25}Cl + Cl \bullet$	1
		(v)	six	1
	(c)	(i)	$C_{12}H_{26} \rightarrow 2C_2H_4 + 1C_8H_{18}$	2
			(1 mark for correct formula of octane or ethene)	
		(ii)	octane/ ecf from (c) (i)	1

23.	(a)	(i)	alkene	1	
			bromine	1	
			decolourises	1	
		(ii)	3-methylhex-2-en-1-ol/ 1-hydroxy-3-methylhex-2-ene	1	
					[4]

24. <u>margarine</u>

Ni catalyst

hydrogen/ hydrogenated

unsaturated vegetable oil/fat

poly(propene)

equation

two repeat units

(Ziegler) catalyst / high temp/heat/use of an initiator	
Problems with disposal	
non-biodegradable/don't decompose/not broken down by bacteria etc	1
when burnt produces toxic fumes	1
Future methods of disposal	
recycling (to produce new polymers)	1
incineration for energy (production)	1
cracking/owtte (to produce useful organic molecules)	
use gas scrubbers to reduce toxic fumes	
any two	

$$max = 9$$

QWC

Answer is well organised/structure and using at least three of:

catalyst, hydrogenation, addition polymerisation, Ziegler, incineration, feedstock, recycling, non-biodegradable, initiator, monomer, unsaturated.

in the correct context.

[10]

1

1

1

1

1

(d) (i)

PMT

[16]

28.	(i)	M_r of 2-methylpropan-1-ol = 74	1	
		moles = $4.44/74 = 0.06$	1	
	(ii)	moles = 5.48/137 = 0.04	1	
	(iii)	66.7%	1	
				[4]

29.	(i)	correctly shows three repeat units with 'end bonds'	1	
		correctly identifies the repeat unit	1	
		$\begin{array}{c c} H & CI \\ \hline \\ C \\ \hline \\ H \\ \hline \\ $		
	(ii)	harmful/toxic fumes are produced	1	
	(iii)	recycle/remove HC <i>l</i> by using gas scrubbers or wtte/crack polymers/used a feedstock/ source of fuel (in an incinerator)/developing biodegradable alternatives.	2	[5]
30.	(i)	$Cl_2 \rightarrow 2Cl \bullet$	1	
	(ii)	uv (light)/high temperature/min of 400 C/sunlight	1	
	(iii)	$Cl \bullet + C_6 H_{12} \longrightarrow C_6 H_{11} \bullet + HCl$		
		$C_6H_{11}\bullet + Cl_2 \longrightarrow C_6H_{11}Cl + Cl\bullet$	1	
	(iv)	react with each other/suitable equation		
		solvent $\mathbf{W} = water/aqueous/aqueous$ ethanol	1	
		solvent $\mathbf{X} = \text{ethanol/alcohol}$	1	[5]
31.	Struc differ	tural/chain/positional isomers have the same molecular formula, rent structure	1	
	but-1 (any	-ene/ but-2-ene/ methylpropene / cyclobutane/ methylcyclopropane three or two with correct structures and names)	3	
	4 ma	rks for structural isomerism		
	Cis-ti	rans /geometric isomerism	1	
	cis &	trans but-2-ene clearly identified	1	
	C=C	prevents rotation	1	
	each	C in the C=C double bond must be bonded to two different atoms or groups	1	
	4 ma	rks for cis-trans isomerism		
	QWC any t rotati	2: Well organised answer making use of correct terminology to include hree from: structural, geometric, cis-trans, molecular formula, restricted, on, stereoisomerism, stereoisomers, chain isomerism, positional isomerism,		
	1t all	isomers are correctly named	1	[9]

2.06 : 2.1 : 2.06 1
CHCl 1
(ii)
$$(CHCl = 12 + 1 + 35.5 =) 48.5$$
 1
 $48.5 \times 3 = 145.5$ 1

(b) (i) Any two from

(ii) 1, 2,3-trichloropropene

(trichloropropene scores 1 mark ✓)

3 marking points:

- correct numbers 1, 2,3 •
- trichloro •
- propene/prop-1-ene •

any two gets 1 mark

1 mark if backbone contains 4 carbons with 'endbonds' and a reasonable attempt has been made *e.g used the wrong isomer.... max = 1 mark*

(ii)	non-biodegradable	1	
	toxic fumes evolved when burnt	1	
	HCl or Cl \bullet or chlorinated organic compounds such as COCl ₂ also	1	
	evolved when burnt	1	[13]

PMT

2

2

34.	identifies the three process as cracking, reforming, isomerisation	1			
	recognises the need for high temperature or a catalyst	1			
	equation for cracking	1			
	equation for isomerisation	1			
	state that reforming converts chains into rings/cyclic compounds	1			
	equation for reforming (balanced with H_2 could score two marks)	1			
	oil is finite/non-renewable 1				
	ethanol is renewable/sustainable				
	from plants/crops/sugar cane/sugar beet/glucose/sugar/ fermentation 1				
	$C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$				
	QWC				
	• organise relevant information clearly and coherently, using specialist vocabulary when appropriate (minimum of 4 from cracking/ isomerisation/ reforming/ renewable/ feedstock/ finite/fermentation/non-renewable/sustainable/zeolite/bimetallic catayst/ etc)				
	• reasonable spelling, punctuation and grammar throughout	1			

[11]

 C_6H_{14} 1 (a) boiling point increases with increase in $M_R/\text{molecular}$ formula/N° of (b) (i) carbon atoms/chain length 1 more intermolecular forces/electrons/surface area/ (ii) surface interactions/van der Waal forces 1 120 – 130 °C (iii) 1 [4]

35.

(i)
$$C_9H_{20} \longrightarrow C_7H_{16} + C_2H_4$$
1(ii) $C_2H_4 + H_2O \longrightarrow C_2H_5OH$ 1temperature > 100 °C/ steam1phosphoric acid (catalyst)1

PMT

[4]

(c) more efficient fuel/better fuel/ higher octane number/reduces knocking/more volatile/lower boiling points/burn better/burn more easily/quicker ✓

[5]

1

[15]

[5]

[3]

39.

correct intermediate/carbonium ion/carbocation and curly arrow	
from Br ⁻ to C+	1
1, 2-dibromopropane as product	1

40.CH₃CBr₂CH₃1CH₃CHBrCH₂Br1CH₃CH₂CHBr₂1(CH₃CHBrCH₂Br has a chiral centre, hence optical isomers of
1, 2-dibromopropane are acceptable but must be drawn with
'wedge-shape' bonds and be non-superimposable mirror images)

- Ni/Pt/Rh/Pd 🗸 (c) (i) 1 compound **B** is $C_{10}H_{22}O \checkmark$ (ii) 1 $C_{10}H_{20}O + H_2 \rightarrow C_{10}H_{22}O \checkmark$ (iii) 1
- $C_4H_{10}\checkmark$ 45. 1 (a) (i) C₂H₅O ✓ (ii) 1
 - B and E \checkmark (iii) 1
 - A and F \checkmark (iv) 1

(b)
$$(C_4H_9OH \rightarrow) C_4H_8 + H_2O \checkmark$$

CH₂CHCHCH₂

buta-1,3-diene ✓ name ecf to the structure only if structure above has formula C_4H_6

[7]

46.

$$\begin{array}{c|c} H & C_2H_5 H & C_2H_5 \\ | & | & | & | \\ -C & -C & -C & -C \\ | & | & | & | \\ H & H & H & H \end{array}$$

1 mark is available if the backbone consists of 4 C atoms and a reasonable attempt has been made $\checkmark\checkmark$

[2]

[9]

1

1

47.	(a)	Same <u>molecular formula</u> , different structure /displayed formula/ arrangement of atoms/bonds $\checkmark \checkmark$	2	
		(Same <u>formula</u> , different structure/displayed formula/arrangement of atoms \checkmark		
(b)		 (i) 3-methylbut-1-ene and 2-methylbut-2-ene (any unambiguous structure/formula is acceptable) ✓✓ 	2	
		(ii) 2-methylbut-1-ene/2-methyl-1-butene ✓	1	
		(iii) 🗸	1	
				[6]

48. (i) any two from methylcyclobutane, 1,1-dimethylcyclopropane and 1,2-dimethylcyclopropane

[4]

49.	(i)	homoly	tic 🗸	1	
	(ii)	$Cl_2 \rightarrow 2$	$Cl \bullet (need \bullet on the Cl penalise only once in the 3 equations) \checkmark$	1	
	(iii)	Ι	$(C_5H_{10}) + \underline{Cl} \bullet \to (\bullet C_5H_9) + \underline{HCl} \checkmark$	1	
		II	$(\bullet C_5H_9) + \underline{Cl_2} \rightarrow \underline{C_5H_9Cl} + \underline{Cl} \checkmark$	1	
					[4]

50.	(a)	(i)	Alkene/C=C ✓		1	
			Alcohol/ROH/hyd	roxy/hydroxyl/OH (not OH ⁻ or hydroxide) 🗸	1	
		(ii)	One of the C in boare the same \checkmark	th C=C is joined to two atoms or groups that	1	
	(b)	Obse	rvation	decolourisation (of Br ₂) \checkmark	1	
		Mole	cular formula	$C_{10}H_{18}OBr_4 \checkmark \checkmark$	2	
				C ₁₀ H ₁₈ OBr ₂ gets 1 mark		
	(c)	reage	ent	CH₃COOH ✓	1	
		cataly	yst	$\rm H_2SO_4/H^+/HCl$ (aq) or dilute loses the mark \checkmark	1	
	(d)	(i)	$C_{10}H_{18}O + 2[O] -$	$\rightarrow C_{10}H_{16}O_2 + H_2O \checkmark \checkmark$	2	
		(ii)	The infra red spec	trum was of compound \mathbf{V}		
		(II)	because absorption	n between $1680 - 1750 \text{ cm}^{-1}$ indicates a C=O \checkmark F a peak between $2500 - 3300 \text{ cm}^{-1}$ shows the absence	1	
			of the OH hydroge	en bonded in a carboxylic acid 🗸	1	[12]

51.	Variation in boiling points.	(max = 4 marks)				
	As chain length increases, boiling p	point increases 🗸	1			
	due to increased number of electrons/ surface area/ more van der Waals forces / intermolecular forces/ more surface interactions \checkmark					
	As branching increases, boiling point decreases \checkmark straight chains can pack closer together/ straight chains have greater surface area/ \checkmark more van der Waals forces /more intermolecular forces/ more surface interactions					
	Isomerisation (max = 4 marks)					
	(pi	roduces) branched chain alkanes 🖌	1			
	eq	uation to illustrate any isomerisation (of octane) \checkmark	1			
into any one of or or or						
		or any other branched isomer of octane				

Branched chains are better/more efficient fuels/used as additives \checkmark	1	
because they are more volatile/easier to ignite/burn more easily/higher octane number(rating)/lower boiling points/reduces knocking (pinking) ✓	1	
QWC mark		
• use of suitable chemical terms such as van der Waals, intermolecular forces/ intermolecular bonds/volatile/ knocking/ pinking/pre-ignition		
• reasonable spelling, punctuation and grammar throughout \checkmark	1	[9]